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Abstract--Using a new technique involving light reflection, the interfacial curvature of a meniscus formed 
by a well wetting liquid steadily displacing a gas in a glass capillary has been measured down to 
about 50 nm from the solid. Within the domain explored, the measured meniscus curvature increases 
strongly as the wall is approached, in agreement with classical models which make use of the continuum 
approximation, no slip, etc. The inner length scale, at which such models fail, is inferred from the 
measurements to be of the order of a molecular dimension, suggesting that non-continuum effects 
dominate. A comparison of measured dynamic contact angles of liquid-liquid pairs of large viscosity 
ratio with a model developed earlier by the authors, incorporating such an inner length scale, suggests 
that the true contact angle in the advancing fluid increases significantly with line speed in one of the 
cases. 
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1. INTRODUCTION 

It has long been known that the shape of a moving meniscus inside a tube depends on its velocity 
(Rose & Heins 1962). With the exception of the observations of Hansen & Toong (1971), the 
meniscus has been reported to be spherical, for instance by Hoffman (1975) in the case of an 
advancing meniscus (liquid displacing a gas) and by Fermigier & Jenffer (1988) in the liquid-liquid 
case. The dynamic contact angle, tpd, between the meniscus and the wall then determines the 
meniscus shape. 

Theoretical considerations suggest that very close to the wall a significant deviation from the 
spherical must occur as a result of viscous stresses and that this deviation is at least in part 
responsible for the observed dependence of the dynamic contact angle on the line speed [see for 
example Dussan V. (1979) and de Gennes (1985) for relatively recent reviews]. Indeed, were the 
classical approximations of no slip, of an interfacial tension and of the continuum description to 
apply at all distances from the line, this deviation would be indefinitely large at all non-zero line 
speeds. 

In reality, at least the continuum approximation must lose its validity at distances from the 
solid of the order of a molecular dimension, thereby removing the singularity and limiting the 
extent of the deviation. In addition, significant slip may occur, as supposed by many authors 
(Dussan V. 1976; Huh & Mason 1977; Cox 1986) and as suggested by simple molecular-dynamics 
simulation (Thompson & Robbins 1989), while the approximation of an interfacial tension, 
confined to an indefinitely thin layer, must be replaced, close to the line, by a representation 
of the long-range intermolecular interactions as volume forces. The latter exercise has recently 
been carried out for a system exhibiting a small but non-zero contact angle, taking account of 
van der Waals interactions (de Gennes et al. 1990). Furthermore, in addition to the above 
effects, a deviation of the true contact angle from its static value may occur, associated, for 
example, with the adsorption and desorption processes involved in the displacement of the contact 
line. 

tPresent address: Laboratory of Separation Technology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 
The Netherlands. 
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Figure l. Definition of variables. 

From the foregoing it is evident that observations of the meniscus shape close to the contact line 
in specific cases would be extremely helpful in sorting out the occurrence and relative importance 
of the various effects. Since, however, the thickness of the region adjoining a moving contact line 
in which the meniscus is significantly deformed is too small for this deformation to be verified 
visually this requires special techniques. 

Using a microscope, the first part of the wall region was observed by Dussan V. et al. (1991), 
at a distance of between 3 × 10 4 and 2 × 10 5 m from the wall, for an advancing meniscus formed 
by immersing a glass cylinder in silicone oil. 

At molecular distances from the wall the shape of a liquid-gas interface of a spreading drop has 
been measured via ellipsometry by Heslot et al. (1989a, b, c, 1990). These experiments showed 
clearly a "step-like" shape very close to the contact line which was supposed to be a result of the 
layering of the molecules. 

In the present study two groups of experiments are described. The first involves a new technique, 
developed to measure the curvature of an advancing liquid-gas meniscus in a capillary 
tube sufficiently close to the wall to cover a large part of the deformed region. The second group 
concerns observations of  the dynamic contact angle in both advancing and receding cases. To arrive 
at fluids exhibiting non-zero static contact angle (q~s) on glass, liquid-liquid rather than liquid- 
gas systems were chosen, using a large viscosity ratio to minimize the role of viscous forces in 
the less viscous phase. These results considerably extend the range of viscosity ratios examined to 
date. 
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Figure 2. The basis of the measuring technique used for measuring the curvature of a (partially) reflecting 
curved interface. 
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The results obtained are examined with interest in the following questions: 

(a) Does the meniscus curvature increase strongly as the wall is approached? 
(b) If so, down to what distance (inner length scale, 2 ) from the wall does this strong increase 

continue? 
(c) Does the meniscus shape correspond quantitatively with any existing model? 
(d) Is the true contact angle, cp0, a function of line speed? 

These questions are, in fact, related since all models incorporate some deviation from classical 
behaviour which effectively defines the inner length scale (slip length, molecular dimension, etc.) 
and require some assumption regarding the true contact angle. The four questions thus effectively 
reduce to a single question (c). 

Most of the available models are not applicable to the present measurements, being either 
confined to the limit of vanishingly small line speeds or concerning finite-element simulations 
of specific situations. These limitations do not apply to an approximate model developed earlier 
by the authors (section 2). Though incorporating an inner boundary condition reflecting 
breakdown of the continuum description, the model agrees excellently with finite-element 
simulations (based on breakdown of the no-slip condition) at distances from the wall 
considerably greater than ). (the "outer" region). It is noteworthy that in this region, which certainly 
includes that involved in the measurement of the dynamic contact angles, all models appear to be 
equivalent for appropriate choices of 2 and tp0. Hence, while data on dynamic contact angles 
provide the first indication of the order of magnitude of 2 and of any line-speed dependence of 
tp 0' they provide no information on the appropriate model of the inner region. Data on the 
meniscus shape close to the wall should enable much harder conclusions to be drawn regarding 
these parameters and possibly permit a choice between models (i.e. between inner boundary 
conditions). 

A brief description of the approximate model and its correspondence with existing observations 
is presented in the next section. Measurements of meniscus curvature and dynamic contact angle 
are presented in sections 3 and 4, respectively, accompanied by the corresponding predictions of 
the model. These results are discussed in section 5, with interest both in the implied values of 2 
and ~P0 and in the underlying mechanisms. 

2. THE MODEL OF THE MENISCUS SHAPE 

An approximate model for the shape of a steadily moving meniscus in a tube has been developed 
by the present authors in a series of articles (henceforth referred to as papers I, II and III), 
beginning with the liquid-gas advancing and receding cases (Boender et al. 1991; Chesters & van 
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Figure 3. Experimental set-up to measure meniscus curvatures. 
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Figure 4. Overall set-up for measuring the curvature of a meniscus in the wall region. 

der Zanden 1993) and extending the model to the liquid-liquid case (van der Zanden & Chesters 
1994) (see also van der Zanden 1993). The model, based on the classical description of the fluids 
down to a distance 2 from the wall, results in a second-order ordinary differential equation for the 
meniscus inclination, ~0, as a function of distance, x, from the wall (figure l): 

d---xd( sin q~ ~xdtP + aC°S~)- x = --2 sin tP ca  ( #RcRsintp+/tRdRc°stp-cAsinq~x 2 ~ A  / '/A - -  dA COS tp ) ,  [1] 

with /tA and /~R the dynamic viscosity of the advancing and receding liquid, respectively, and CR, 
CA, dR and dA as given in appendix A. a is the tube radius. The capillary number, Ca, is the line 
speed U in the advancing phase made dimensionless with/A A and the interfacial tension a 

Ca - gA U [2] 
t7 

time 

Figure 5. Intensity record of the reflected light during the passage of a meniscus through the laser beam. 
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time 

Figure 6. More ragged intensity record of the reflected light during the passage of a meniscus through 
the laser beam. 

The applied inner boundary condition is that of specified to at distance 2 from the wall. 
Agreement was obtained between prediction and available measurements of dynamic constant 
angle if ;t was taken to be of the order of a molecular dimension and the corresponding value of 
tOo was therefore termed the true contact angle, since it could be interpreted as the final meniscus 
inclination. 

In the advancing case the predicted meniscus shape proved relatively insensitive to the values 
of both ;t and tOo and good agreement with experimental data on tOd was obtained taking ;t = lO -9 m 
(of the order of a molecular dimension) and tOo = tOs (paper I). In the receding case, in which a film 
of liquid is left behind on the wall above some critical capillary number, the predicted meniscus 
shape is sensitive to the value of tOo and evidence for significant deviation of tOo from tO, at the critical 
capillary number was found (paper II). In the liquid-liquid case, in which one of the liquids is 
always receding, and the meniscus shape is again sensitive to the value of tOo, evidence was once 
more found for a departure of tOo from tOs in certain systems (paper III). 
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Figure 7. Comparison of the experimental results (error bars) with the prediction of the model for three 
).-values (continuous lines), for given Ca and varying q~. 
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Figure 8. Comparison of the experimental results (error bars) with the best fit of the prediction of the 
model (2 = 1.7 x 10-9m), for given Ca and varying ~0. 

The dynamic, or apparent, contact angle, ~%, is defined here as 

~o~ = cos- ~ a 2- +--h 2 [3] 

where h is the apex height of  the meniscus (figure 1). For a spherical meniscus q~ equals the contact 
angle at the wall. 

3. D E T E R M I N A T I O N  OF THE M E N I S C U S  C U R V A T U R E  IN THE V I C I N I T Y  OF AN 
A D V A N C I N G  L I Q U I D - G A S  C O N T A C T  L I N E  

Experimental set-up 

The basic principle of  the measurement is illustrated in figure 2. A parallel laser beam uniformly 
illuminates a portion of  the interface and by use of  a diaphragm the intensity of  the light reflected 
within a small angle of  the incident direction is measured. Since the interface is unequally curved 
in the two principal directions, the light received originates from an elliptical portion of the 
interface with major and minor axes, 1, and/2,  proportional to the principal radii of  curvature R~ 
and R2t. Neglecting wave effects, the detected intensity is proportional to the area of  the ellipse 
and hence to the product R~ R2. The region of the interface examined is simply that normal to the 
chosen laser direction. 

The application of  the principle of  figure 2 to an advancing meniscus in a capillary tube is 
depicted in figure 3. A glass capillary with external diameter 6.0 mm and internal diameter 1.7 mm 
is partially filled with liquid. The capillary can move in and out of  a vessel which is filled with the 
same liquid. A movement of  the capillary into the vessel, imposed by a servo motor,  causes the 
liquid-gas meniscus in the capillary to advance in the opposite direction. 

The capillary tube is fastened on a stepper motor  (figure 4). An almost parallel laser beam 
illuminates a small portion of the meniscus, lens 1 determining the size of  the illuminated spot. The 
spot size must not be too small as the measuring technique is based on the assumption that the 
portion of  the meniscus from which the reflected intensity is measured is uniformly illuminated. 
The prism mounted against the capillary permits the required range of  angles of  incidence. Between 
the prism and the capillary a drop of decalin (refractive index equal to that of  the glass) prevents 
refraction at the outer tube wall. The angle between the laser beam impinging on the meniscus and 
the reflected rays through the diaphragm was not zero but approx. 5 ° ( =  2~: figure 4). This was 

tNote that this implicitly assumes the angle of collection to be constant. Since the reflected light originates from a virtual 
source a distance R/2 behind the interface and since R is in reality much smaller than the distance between interface 
and diaphragm, this is justified. 
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done to avoid scattered light from the laser beam incident on the semi-transparent mirror entering 
the photomultiplier. A small mirror, instead of the semi-transparent mirror, could also have been 
used. The stepper motor  in figure 4 can rotate the capillary and the vessel so that measurements 
can be carried out for different ~0-values. The angle of the laser beam in the liquid is calculated 
from Snell's law. The corresponding value of tp is obtained allowing for the fact that the laser is 
not quite normal to the reflecting region of the meniscus but inclined at a small angle, cc 

Measuring procedure 
To insure cleanliness, the capillary and the inside of the vessel were first washed with chromic 

acid. Afterwards both were rinsed with distilled water and dried in an oven for about half an hour 
at round 120°C. The vessel was filled with silicon oil of moderately high viscosity 
(# = 0.552 kg m -~ s -I, cr = 2.22 x l 0  -2 N m -~, static contact angle 0°). The use of a much higher 
viscosity would have required very small velocities for a given capillary number. Temperature 
fluctuations of  the liquid in the vessel would then superimpose a comparable additional velocity. 
The use of a much smaller viscosity could have led to inertial effects, which are not included in 
the theoretical model. 

The moving meniscus traverses the laser beam and the intensity of reflected light is measured. 
The intensity detected by the photomultiplier shows a peak as the meniscus passes the laser beam 
(figure 5). At the moment the maximum intensity,/max, is registered, the meniscus is in the centre 
of  the laser beam. As was argued before, Imax is proportional to the product of the principal radii 
of curvature. To obtain this product, the system was calibrated for each angle of incidence using 
known radii of  curvature. For this purpose a very slowly receding meniscus was used. Although 
a thin film is left behind, the (equal) radii of curvature of a slowly receding meniscus are very nearly 
equal to that of  the capillary, a. Note that this calibration also eliminates the effect of unequal 
weighting of  the contributions from R, and R2, caused by refraction at the inner tube wall and 
outer prism surface (resulting in unequal collecting angles of these contributions at the interface). 
For  the same reason it is not necessary that the diaphragm be normal to the collected light. 

A contact line formed by a liquid with zero static contact angle cannot recede. Thus a given 
region of  the capillary can be used only once. To carry out further measurements, the capillary 
and the vessel in figure 4 can be displaced so that the laser beam shines on a dry part of the capillary. 
The measurement of  the advancing meniscus can then be repeated followed by calibration with the 
slowly "receding" meniscus. After each measurement of an advancing meniscus follows a 
measurement of a "receding" meniscus. 

To avoid stick-slip phenomena between the quadring and the capillary (figure 3), the outside 
of  the capillary which moves into the vessel is prewetted with the silicon oil as used for the meniscus. 
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Figure 9. Comparison of the experimental results (error bars) with the prediction of the model 
(3, = 1.7 x 10 -9 m),  for given ~0 and varying Ca. 
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Figure 10. Intensity of the reflected light during the passage of a meniscus through the laser beam for 
the smallest measured radius of curvature. 

This lubrication makes a smoother motion of  the meniscus possible. Even then, not every record 
of intensity was as smooth as in figure 5. Intensities with a more "ragged" appearance, as depicted 
in figure 6, were also registered. 

When the entire capillary has been used it is first rinsed with hexane and then with water, after 
which the washing procedure with chromic acid and distilled water is repeated. All measurements 
are performed with the same capillary over a length of  approx. 20 cm. 

Results 
In figure 7 the results of  the measurements for Ca = 6.40 x 10 -3 are presented (the error bars), 

together with the predictions of  the model for various 2-values, taking the true contact angle, ~00 
as constant at 0 °. Every bar is the result of  at least ten measurements, cp denotes the local inclination 
of  the meniscus, varying from 90 ° at the tube centre to ~o0 at the wall. The term R, R2/a 2, an inverse 
measure of  the meniscus curvature, is constant in the central, spherical portion of the meniscus and 
decreases in the wall region. The best fit is obtained for a ).-value of 1.7 × 10 -9 m (figure 8). A small 
systematic deviation remains. 

Figure 9 presents complimentary measurements at a fixed value of ~0 for various Ca-values. The 
corresponding model predictions are once more based on ). = 1.7 x 10 -9 m and q~0 = 0 °. A similar 
deviation is observed, the model overestimating the smaller values of  Rl R2 and underestimating 
the larger. 

The limit of  measurable intensity was posed by the background intensity which ultimately 
becomes comparable with that of  the reflection peak, as illustrated in figure 10. In the series 
presented in figure 8, the final measurement point corresponds to x =4 .6  × 10 8m and 
R 1 = 1.5 X l 0  - 6  m, where x (distance from the wall) and R, have been calculated with the help of  

•l• i~°n 

q u ~ ' ~ ~  L vessel 
i! 

f !  . .  I I 

mo~iscLLe "Sin_gO " ~  h~°S~ 
Figure 11. Experimental set-up to measure dynamic contact angles. 
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Figure 12. The Ca-dependence of ~0 a for glycerine displacing hexane (a = 8.61 x 10 -4 m). 

the model. For the series in figure 9, the corresponding figures are respectively 8.3 x 10 -8 and 
1 . 7  x 10 -6 m. Since these Rl-values are only a few times the wavelength of  the laser light, it is likely 
that wave (i.e. diffraction) effects are becoming significant and the interpretation of  the signal then 
becomes difficult anyway. 

Finally, we note that an attempt was also made to apply the technique to a receding liquid-gas 
contact line. It did not, however, prove possible to obtain any information on the meniscus shape 
in the wall region since a receding meniscus with a static contact angle below 90 ° can have two 
points on the meniscus on which the laser light impinges perpendicularly: one in the outer region 
of the meniscus and one in the wall region. The light reflected onto the photomultiplier from the 
point in the wall region is drowned by that from the point in the outer region. 

4. D Y N A M I C  C O N T A C T  ANGLES FOR L I Q U I D - L I Q U I D  C O M B I N A T I O N S  OF 
LARGE VISCOSITY RATIO 

Experiments 
In order to measure dynamic contact angles of a meniscus formed by two liquids in a capillary, 

a set-up has been constructed as shown in figure 11. With the help of the servo motor a glass 
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Figure 13. The Ca-dependence of q~d for glycerine displacing a low-viscosity silicon oil (a = 8.28 x 10 -4 m). 
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Figure 14. Variation of cp 0 with Ca required to obtain agreement between computations and experiments 
in the case studied in figure 13. 

capillary and rod combination can be made to move through the vessel filled with liquid. The liquid 
in the vessel has access to the capillary via two holes in its wall. The dimensions of  the capillary 
and the rod are chosen such as to produce a moving meniscus which moves with respect to the 
capillary but not with respect to the laboratory frame. The piston serves to adjust the position of 
the meniscus. With a computer the motor  is made to move with a constant velocity. The result 
is that the meniscus moves through the capillary with a constant velocity. The dynamic contact 
angles were determined by taking photographs and measuring the apex height of  the meniscus [3]. 
A microscope slide mounted against the capillary with decalin (having the same index of  refraction 
as glass) in between prevented light refraction from the outer tube wall. 

Results 

The first liquid combination used was glycerine (/z = 1 .47kgm -~ s -~) displacing hexane 
( / ~ = 3 . 6 8 × 1 0 - 4 k g m - l s  -1, # R / # A = 2 . 5 × I 0  -4) with interfacial tension 2 . 5 2 × 1 0  2 N m  t 
(measured by the Wilhelmy plate method). In figure 12 the results are compared with the model 
taking 2 = 10-9m and ¢P0 = 98°- The agreement is good, confirming the order of  magnitude of 2 
and implying that, in this case, the approximation of constant ~P0 is acceptable. 

40  o 

3 0  ° ° 

~d 20 
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10 ~ = 5 " 1 0 - ~  m 

°t 
'0 '1 '2 '3 '4 

- C a  * 10 3 

Figure 15. The Ca-dependence of tp~ in the same case as studied in figure 13. For ease of comparison with 
receding liquid-gas data, ~0 d and Ca have been based on the more viscous phase (Ca = -I~sU/tr). 



MENISCUS SHAPE ASSOCIATED WITH CONTACT LINES 785 

The second liquid combination used was glycerine (/~ = 0.995 k g m  -~ s -~) displacing a low 
viscous silicon oil (# = 4 . 7 9 x  1 0 - 3 k g m - l s  -~, /~R//~A=4.81 × 10 -3) with interfacial tension 
1.99 x 10-2N m- l  (measured by the pendent drop method). In figure 13 the results are compared 
with the model taking % = 66 ° and 2 = 10 -9 o r  10 -I° m. The measurements deviate significantly 
from the predictions of the model. The agreement could be improved by choosing a smaller 2-value. 
However, in view of the size of the molecules this would be physically unacceptable. A more 
obvious choice which leads to better agreement is to abandon the assumption that the true contact 
angle remains equal to the static value. In figure 14 the true contact angle at the wall needed to 
obtain agreement between model (4 = 10 -9  m )  and experiments as a function of the capillary 
number. 

Finally the same liquid combination was used with the silicon oil as the advancing liquid and 
the glycerine as the receding. In figure 15 the measurements are shown to agree with the predictions 
of  the model, taking % = 38 ° and 2 around 6 x 10 -9 m. 

5. DISCUSSION 

The measurements presented in section 3 provide direct confirmation of the existence of a wall 
region in which the meniscus curvature increases strongly as the advancing contact line is 
approached. As the final measuring station is still quite far from the wall in molecular terms, it 
cannot be concluded that the entire difference between the dynamic and static contact angles is 
apparent, as the true contact angle may not be zero. A glance at the first series of measurements, 
however, indicates that at the last measuring station, around 50 nm from the wall, the meniscus 
inclination has already fallen to about 30 °, while the curvature is very strong (R~ ~ 1/~m). Clearly, 
therefore, the true contact angle must be considerably smaller than 30 ° . 

If  it is supposed that the true contact angle in this case is at any rate less than 20 ° then the best-fit 
value of 2 is found to be at most a factor 2 larger than the 1.7 nm obtained taking t¢ 0 to be zero. 
This leads to the important conclusion that, at least in the present case, the inner length scale which 
governs the behaviour in the wall region is of the order of molecular dimensions. While this 
conclusion was tentatively reached in papers I-III,  as well as by other authors such as Lowndes 
(1980), the present results leave much less margin for doubt. 

We note at this point that de Gennes et al. (1990) concluded that for very small static contact 
angles the inner length scale should be determined by deviations from classical behaviour associated 
with long-range intermolecular (van der Waals) forces. In the small-Ca limit which they treat, their 
equation for the meniscus shape corresponds to our own (see appendix B), the role of the length 
scale 2 now being played by the parameter L/(2q~ ~), where L is the length scale x/-A/(6na) (A - the 
Hamaker constant). Since A is typically of the order of 10 -2o J, this length scale should be the 
dominant one for small ~ocvalues, becoming greater than 10 nm for q~-values less than about 5 °. 
At first sight this conclusion would appear to be in conflict with the present findings. The present 
case of zero q~s is, however, excluded by their theory. 

While a 2-value of the order of a nanometer provides a reasonable fit of the experimental results, 
a certain systematic deviation appears to remain (figures 7-9). Various possible explanations 
present themselves, such as: 

(1) Fluid dynamic approximations incorporated in the theoretical model. 
(2) Error in the inferred meniscus curvatures, due to the wave nature of light. 
(3) Behaviour in the inner region complicated by multiple length scales (reflecting various 

deviations from classical behaviour, such as that considered by de Gennes et al. 1990), of 
which the molecular scale 2 is merely the most prominent). 

(4) Deviation of the true contact angle from the static value. 
(5) Inhomogeneities in the solid surface. 

While at present it is not possible to rule out any of these effects, (1) and (4) appear unlikely, at 
least as complete explanations. Predictions of the approximate model in the liquid-gas advancing 
case agreed with finite-element results of Lowndes (1980) within about a degree (paper I), while 
the hypothesis that the true contact angle increases with line speed could improve the agreement 
in figure 9 but not in figure 8. 
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Turning to possibility (2), the smallest radii of curvature involved are only a few times the 
wavelength of light. As noted in section 4, wave effects then almost certainly become significant. 
To explain the discrepancy, these effects would need to reduce reflection at higher curvatures. While 
such effects should be theoretically predictable, the problem appears to be a complex one, involving 
not only the influence of the ratio R~/A on the coefficient of normal reflection but also the effect 
of the nearby solid surface (A = wavelength of light). Possibility (3)--of additional length 
scales--has been touched on above. Surface inhomogeneity [possibility (5)], which also introduces 
new length scales, is discussed below in the context of the dynamic-angle measurements. 

The measurements presented in section 4 extend those of Fermigier & Jenffer (1988), discussed 
in paper III, in which the largest value of/ZR//~ A was 0.9 (as compared with around 200 in the present 
study) and the smallest 7.6 x 10-3 (as compared with 2.5 × 10 -4 here). The comparison of the new 
data with predictions of the model provides the same picture, however, in some cases the behaviour 
is adequately predicted taking q~0 = q0s, in others a significant increase in cp 0 (measured in the 
advancing phase) with Ca must be supposed in order to obtain agreement. 

The simplest explanation of the line-speed dependence of ~o 0 in some cases is that this reflects 
variation in the true advancing angle, associated with the kinetics of desorption of the receding 
fluid and adsorption of the advancing. Intuitively it is credible that desorption may be rate-limiting 
for a liquid but not for a gas and this accords with data in advancing liquid-gas cases, which have 
so far been well described by a constant q~0-value. Likewise large molecules of silicon oil might be 
expected to desorb more slowly than those of hexane (figures 13 and 12, respectively). The fact 
that the advancing mode of the glycerine-silicon system exhibits a deviation of ~0 from q0~, while 
the receding mode does not, should not be considered significant; the largest Ca-values in the 
receding case are less than those at which significant deviation is observable in the advancing case. 

It should be noted however that the results for the same pair of liquids in both the advancing 
and the receding modes indicate that considerable hysteresis (28 ° ) exists in the static contact angle. 
The presence of hysteresis points to non-ideality of the wall (roughness/chemical heterogeneity). 
The relationship between the dynamic contact angle and the capillary number must be influenced 
by this heterogeneity, which will modify the fluid motion on the scale concerned. It is conceivable 
that such effects appear as apparent linespeed dependence of the q~0-value and that this, rather than 
variation of the true contact angle, is involved. It seems likely that such uncertainty will remain 
until reliable models of the effects of surface heterogeneity, which is virtually always present in 
reality, have been developed. 
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A P P E N D I X  A 

The coefficients CR -. .  dA are: 

cR = S 2 [ S :  - 6tp + R (tp 2 - S :)]/D, 

dR = S C  IS  2 _ 6q~ + R (~0 2 _ S 2) _ zt t a n  tp ] / D ,  

CA = $2[S  : -- 6 : + R (6tp - S : ) ] /D ,  

da = S C  IS  2 _ 6 : + R (tp6 - S : )  _ R n  t a n  ~o ]/ D ,  

where S - sin q~, C = cos ~0, 6 - ~0 - rt, R =- #R//~A and 

D - ( S C  - rp)(6 2 _ S 2) + R (6 - SC)(q~ z _ $2). 

[AI] 

[A2] 

[A3] 

[A4] 

[AS] 

A P P E N D I X  B 

Taking account of van der Waals forces, de Gennes et al. derived an expression for the meniscus 
shape in the region where the classical hydrodynamic approximations apply, for the limiting case 
of small values of the parameters tps and 3 Ca/q)~: 

tp=r¢, 1+-~-3 ln~ , [Bl] 

where 

2~0 ~ x/(6rrrr)" [B2] 

Making use of the fact that 3 Ca/rp 2<< 1, this equation can be written 

q~3=~o~+9Caln ( -~ ) .  [B3] 

This is the same as the small-q~s, small-Ca limit of our own model, the length scale 2 now being 
determined by van der Waals forces rather than by a molecular dimension. 


